CAES

Compressed Air Energy Storage

Bryan Campbell Timothy Davis Ray Melendez

Overview

- Project Overview
- Project Scope Re-statement
- Risk Assessment
- Spring Schedule
- Conclusion

Project Overview

• What is CAES?

Compressed Air Energy Storage

- How can we store Wind Energy
 Compress Air
- Storage

Man made pressure vessel for small scale

- Power Generation
 - Air Motor

Limitations Encountered

- Compressors as sold have an input Power limited to $\pm 5\%$ of electric power range
 - Otherwise operation is extremely inefficient and damaging to compressor
- Too wide of input Power Range
 - Wind doesn't blow at constant velocity
 - Mechanically drive air compressor
- Pressure Vessel
 - Maximum operating pressure
 - Size

Project Scope

- Theoretical Analysis
 Efficiency, Energy Balance
- Wind Data Analysis
 - Data provided by sponsors
- Recommend Parts based on Analysis
 - Parts too costly
 - Recommend parts for most efficient CAES system

Spring Semester

- Derive governing differential equations
 - Variable power input
 - Variable input with simultaneous power extraction
- Obtain numerical data
 - Compressor power curves for variable power input
 - Experimental wind data
 - Solve ODEs with numerical data
- Efficiency calculations
- Final recommendations
- Testing if possible

Obvious Risks

- Wind
- Variable Compression
 - Outlet Pressure
 - Volumetric Flow rate
 - Effects vessel fill time and efficiency
- Pressure Vessel
 - Controls for input/output
 - Air at high pressure
- Equipment
 - Size of project and equipment
 - We are not qualified to operate and maintain this equipment

Risk Management

- Wind
 - Outside of our control
 - Inherent with wind turbines and systems built with wind reliance
- Pressure Vessel Controls
 - Will require outside power source
- Air Motors
- Not purchasing equipment
 - Too large and maintenance intensive for our purpose
 - Making recommendations to sponsor instead

Governing Equation

Continuity Equation

Ideal Gas Assumption

$$0 = \frac{\partial m}{\partial t}\Big|_{CV} + \iint_{CS} \rho V_n dA \qquad m = \frac{p \forall}{RT} \Longrightarrow \frac{\partial m}{\partial t}\Big|_{CV} = \frac{\forall}{RT} \frac{dp}{dt}$$

Mass through the control surface

$$\iint_{CS} \rho V_n dA = \iint_{out} \rho V_n dA - \iint_{in} \rho V_n dA$$

Governing Equation Cont.

Case I. Assume Air motor not operating

$$\frac{\Psi}{RT}\frac{dp}{dt} = \iint_{in} \frac{p}{RT} V_n dA$$

Solve for Pressure differential

$$\frac{dp}{dt} = \frac{1}{\Psi} p_{in}(t) \dot{\Psi}(t)$$

Governing Equation Cont.

Case II. Assume Air motor operating at constant speed

$$\iint_{CS} \rho V_n dA = \iint_{out} \rho V_n dA - \iint_{in} \rho V_n dA$$

Solve for Pressure differential

$$\frac{dp}{dt} = \frac{1}{\mathcal{V}} \left[p_{in}(t) \dot{\mathcal{V}}(t) - p_{out} \dot{\mathcal{V}}_{out} \right]$$

Solving Differential Equations

- Experimental data for wind speed over time

 Power/rpm output of turbine
- Compressor data
 - Compressor power curves for variable power input
 - Flow rate for variable rpm
 - Constant pressure output
- Air Motor data
 - Constant operating pressure and flow rate
- Numerical integration

Wind Data

Wind Turbine RPM

Compressor Data

QGV 40

Actual Compressor Flow Rate

Compressor Flow Rate

Pressure Variation in Vessel with Power Generation

What's Next?

- Finish calculations and analysis
- Automate calculations for new data
- Final recommendations
- Testing if possible

Sponsors

- Dr. Srinivas Kosaraju
- Dr. Rob Hovsapian
- Keuka Wind

